用户名:密码:注册
统一服务热线:400-606-3393 010-57799777最近浏览过
首页>数学>学案>【湘教版】2016-2017学年九年级数学上册精品教学案::1.1《建立反比例函数的模型》

【湘教版】2016-2017学年九年级数学上册精品教学案::1.1《建立反比例函数的模型》

分享到:

在线预览

该文档不支持在线预览

资料类别:  数学/学案 所属版本:  湘教版
所属地区:  全国 上传时间:  2016/10/11
下载次数:  46 次 资料类型:  
成套专题:  专题名称
上传人:  tsNH****@sina.com

专用通道下载教育专线下载

反馈错误
文档大小:39KB      所需点数:0点
下载此资源需要登录并付出 0 点,如何获得点?

资料概述与简介

湘教版九年级上册教案 1.1 建立反比例函数的模型 教学目标 1.使学生理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,函数式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想重点难点 重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 教学设计 .探究展示  (一)合作探究 1.如何解教材第2页“动脑筋”中的问题? 以小组为单位,由组长带领组员讨论,得出结论: 当路程一定时,选手的平均速度与所用时间之间的关系式为,当路程s一定时,每当t取一个值时,v都有唯一的一个值与它对应,因此v是t的函数,由于当s一定时,v与t成反比例关系,因此把这样的函数称为反比例函数. 设计意图:先引导学生审题,列出函数关系式,并与我们以前学过的一次函数、正比例函数的关系式进行类比,找出不同点,使学生对知识认知有系统性、完整性. 2.你能归纳反比例函数的概念吗? 先由学生根据问题1的结论讨论,然后总结: 一般地,如果两个变量y与x的关系可表示成y=(k为常数,k≠0)的函数称y是x的反比例函数,其中x是自变量,y是x的函数,k是比例系数. 反比例函数的自变量x的取值范围是不等于0的一切实数 反比例函数y=的变式: xy=k,y=kx-1 注意:(1)在反比例函数的表达式y=(k为常数,k≠0)中,x的次数是-1,常数k可正可负,反比例函数的实质是一类分式函数. (2) 在反比例函数的表达式y=(k为常数,k≠0)中,变量x与y的位置是对称的,即x也可看作y的函数. (二)展示提升 1.如图,已知菱形ABCD的面积为180,设它的两条对角线AC,BD的长分别为x,y.写出变量y与x之间的函数表达式,并指出它是什么函数. 学生先尝试着解答,然后再交流,从中得出什么结论与大家分享. 2.下列函数是不是反比例函数?若是,请写出它的比例系数. (1)y=3x-1 (2) (3) (4) 可点名展示,也可分组展示,培养学生分析问题和解决问题的能力;同时增强学生团结协作的精神。老师在此环节准确引导,及时点拨和追问,总结出解决问题的方法和规律。 设计意图:通过实例进一步加深对反比例函数的认识. 三.知识梳理 本节课我们学到了什么?启发学生谈谈本节课的收获. 1.一般地,如果两个变量y与x的关系可表示成y=(k为常数,k≠0)的函数称y是x的反比例函数,其中x是自变量,y是x的函数,k是比例系数. 反比例函数的自变量x的取值范围是不等于0的一切实数 2.反比例函数的变式有xy=k,y=kx-1,运用反比例函数的概念及变式正确判断一个给定的函数是否为反比例函数.当堂检测 1.写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值. (1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化; (2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化; (3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化. 2.下列哪些关系式中的y是x的反比例函数?如果是,比例系数是多少? (1)y=x; (2)y=; (3)xy+2=0; (4)xy=0;  (5)x=. 3.已知函数y=(m+1)x是反比例函数,则m的值为    . 五.教学反思 反比例函数概念形成的过程中,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系和变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,审视某些实际现象. 初中学习网,资料共分享!我们负责传递知识!www.czxxw.com B A D C

更多>>其他相关资源

资料ID:

 / /

 …下载本资料需要
进入下载页

下载次

评论

我要评论 挺不错 有待提高

热门下载