用户名:密码:注册
统一服务热线:400-606-3393 010-57799777最近浏览过
首页>数学>同步>【冀教版】2016秋八年级数学上册培优练习:17.2-3《直角三角形、勾股定理》(含答案)

【冀教版】2016秋八年级数学上册培优练习:17.2-3《直角三角形、勾股定理》(含答案)

分享到:

在线预览

该文档不支持在线预览

资料类别:  数学/同步 所属版本:  冀教版
所属地区:  全国 上传时间:  2016/10/8
下载次数:  16 次 资料类型:  
成套专题:  专题名称
上传人:  sRYv****@sina.com

专用通道下载教育专线下载

反馈错误
文档大小:166KB      所需点数:0点
下载此资源需要登录并付出 0 点,如何获得点?

资料概述与简介

17.2 直角三角形 17.3 勾股定理 专题一 勾股定理与方程 1.如图所示,已知在三角形纸片ABC中,BC=3, AB=6,∠BCA=90°在上取一点,以为折痕,使的一部分与重合,与延长线上的点重合,则的长度为A.6 B.3 C. D. 一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米. 当正方形DEFH运动到什么位置,即当AE= 米时,有DC=AE+BC. 如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长. 在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是  . (2011黑龙江省牡丹江)在△ABC中, AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长. . 2.勾股定理的逆定理 如果三角形的三边a,b,c,满足,那么这个三角形是直角三角形. 【温馨提示】 在直角三角形中知道任意两边都可以利用勾股定理求出第三边. 【方法技巧】 1.当图形中没有直角三角形时,有时可以通过作高构造直角三角形. 2.判定一个三角形是直角三角形有两种方法:①借助三角形内角和求出一个角是直角;②利用勾股定理的逆定理. 参考答案 1.C 解析:由折叠可知BC=BA=6,DE=AE,∵BC=3,∴CD=BC=3,∴BE=DE=AE,由勾股定理可得AC=,设DE=AE=BE=x,在Rt△BCE中,32+=x2,解得x=,即DE的长度为 解析:因∠A=30°,∠B=90°,BC=6米,所以AC=12米设当AE为 x时,所以EC=12-x,DC=AE+BC所以有22+(12-x)2=x2+36得x=解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°, ∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD∵∠A=30°,AC=2,∴CD=, ∴BD=CD=, 由勾股定理得:AD==3, ∴AB=AD+BD=3+答:AB的长是3+.,∴,∴∠DAC=90°,∴∠DAB=90°+45°=135°. 5. 或4或4:(1)当AB=AC时,∵∠A=30°,∴CD=AC=×8=4; (2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,,∴CD==4;(3)当AC=BC时,则AD=4,,解得x=. 故答案为:或4或4. 8.解:∵AC=4,BC=2,AB=,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90. 分三种情况如图(1),过点D作DE⊥CB,垂足为点E.易证△ACB≌△BED,易求CD=2如图(2),过点D作DE⊥CA,垂足为点E.易证△ACB≌△DEA,易求CD=2如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F. 易证△AFD≌△DEB,易求CD=3 ∴CD的长为2或2或3. 初中学习网,资料共分享!我们负责传递知识!www.czxxw.com

更多>>其他相关资源

资料ID:

 / /

 …下载本资料需要
进入下载页

下载次

评论

我要评论 挺不错 有待提高

热门下载