用户名:密码:注册
统一服务热线:400-606-3393 010-57799777最近浏览过
首页>数学>教案>2016年广东省汕头市龙湖实验中学八年级数学上册教案:12.2《三角形全等的判定》4(新版)新人教版

2016年广东省汕头市龙湖实验中学八年级数学上册教案:12.2《三角形全等的判定》4(新版)新人教版

分享到:

在线预览

该文档不支持在线预览

资料类别:  数学/教案 所属版本:  新人教
所属地区:  广东 上传时间:  2016/7/4
下载次数:  24 次 资料类型:  
成套专题:  专题名称
上传人:  FjSQ****@163.com

专用通道下载教育专线下载

反馈错误
文档大小:245KB      所需点数:0点
下载此资源需要登录并付出 0 点,如何获得点?

资料概述与简介

12.2.4三角形全等的判定t△ABC中,直角边是 、 ,斜边是 3、如图,AB⊥BE于C,DE⊥BE于E, (1)若∠A=∠D,AB=DE, 则△ABC与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (2)若∠A=∠D,BC=EF, 则△ABC与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (3)若AB=DE,BC=EF, 则△ABC与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (4)若AB=DE,BC=EF,AC=DF 则△ABC与△DEF (填“全等”或“不全等” ) 根据 (用简写法) 二 、创设情境,导入新课 如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放课件) (1)你能帮他想个办法吗? (2)如果他只带了一个卷尺,能完成这个任务吗? (1)[生]能有两种方法. 第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的. 第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等. 可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等. [师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗? 三、探究 做一做: 已知线段AB=5cm,BC=4cm和一个直角,利用尺规做一个直角三角形,使∠C=90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律? (学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体课件演示,激发学习兴趣). 作法: 第一步:作∠MCN=90°. 第二步:在射线CM上截取CB=4cm. 第三步:以B为圆心,5cm为半径画弧交射线CN于点A. 第四步:连结AB. 就可以得到所想要的Rt△ABC.(如下图所示) 将Rt△ABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等. 可以验证,对一般的直角三角形也有这样的规律. 探究结果总结: 斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”). [师]你能用几种方法说明两个直角三角形全等呢? [生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、ASA、AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定. [师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行. 四、例题: [例1]如图,AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD. 分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,就可以证明BC=AD了. 证明:∵AC⊥BC,BD⊥AD ∴∠D=∠C=90° 在Rt△ABC和Rt△BAD中 ∴Rt△ABC≌Rt△BAD(HL) ∴BC=AD. [例2]有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系? [师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看. 证明:在Rt△ABC和Rt△DEF中 又∵∠DEF+∠DFE=90° ∴∠ABC+∠DFE=90° 所以Rt△ABC≌Rt△DEF(HL) ∴∠ABC=∠DEF 即两滑梯的倾斜角∠ABC与∠DFE互余. 五、课时小结   至此,我们有六种判定三角形全等的方法:   1.全等三角形的定义 2.边边边(SSS) 3.边角边(SAS)   4.角边角(ASA) 5.角角边(AAS) 6.HL(仅用在直角三角形中) 六、布置作业 必做题: 课本P44页习题12.2中的第7,8,选做题:12,13题 七、板书设计 【教学反思】 初中学习网,资料共分享!我们负责传递知识!www.czxxw.com 11.2.4 三角形全等判定(4) 一、复习导入 二、尝试活动 探索新知 三、应用新知 解决问题 四、总结提高

更多>>其他相关资源

资料ID:

 / /

 …下载本资料需要
进入下载页

下载次

评论

我要评论 挺不错 有待提高

热门下载