用户名:密码:注册
统一服务热线:400-606-3393 010-57799777最近浏览过
首页>数学>教案>《三角形全等的判定》教案1(人教新课标八年级上)

《三角形全等的判定》教案1(人教新课标八年级上)

分享到:
资料类别:  数学/教案 所属版本:  新人教
所属地区:  全国 上传时间:  2011/7/11
下载次数:  102 次 资料类型:  
成套专题:  专题名称
上传人:  rljJ****@qq.com

专用通道下载教育专线下载

反馈错误
文档大小:347KB      所需点数:2点
下载此资源需要登录并付出 2 点,如何获得点?

资料概述与简介

11.2 三角形全等的判定 (第1课时) 教学目标 1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性. 3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. 教学重点 三角形全等的条件. 教学难点 寻求三角形全等的条件. 教学过程 Ⅰ.创设情境,引入新课 出示投影片,回忆前面研究过的全等三角形. 已知△ABC≌△A′B′C′,找出其中相等的边与角. 图中相等的边是:AB=A′B、BC=B′C′、AC=A′C. 相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′. 展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画? (可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等) 只给定一个角时: 2.给出的两个条件可能是:一边一内角、两内角、两边. 可以发现按这些条件画出的三角形都不能保证一定全等. 给出三个条件画三角形,你能说出有几种可能的情况吗? 归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边. 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况. 已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1.作图方法: 先画一线段AB,使得AB=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm. 2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.这说明这些三角形都是全等的. 3.特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律: 三边对应相等的两个三角形全等,简写为“边边边”或“SSS”. 用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题. [例]如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架. 求证:△ABD≌△ACD. [分析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等. 证明:因为D是BC的中点 所以BD=DC 在△ABD和△ACD中 所以△ABD≌△ACD(SSS). 生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.例如屋顶的人字梁、大桥钢架、索道支架等. Ⅲ.随堂练习 如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件? 2.课本练习. Ⅳ.课时小结 本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题. Ⅴ.作业 1.复习巩固1、2.课后作业:《新课堂》 Ⅵ.活动与探索 如图,一个六边形钢架ABCDEF由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法? 本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用. 结果:(1)可从这六个顶点中的任意一个作对角线,把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2). 板书设计 §13.2.1 三角形全等的条件(一) 一、三角形全等的条件 三边对应相等的两三角形全等(SSS) 二、例 三、课堂练习 四、小结 第2课时 教学目标 1.三角形全等的“边角边”的条件. 2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. 3.掌握三角形全等的“SAS”条件,了解三角形的稳定性. 4.能运用“SAS”证明简单的三角形全等问题. 教学重点 三角形全等的条件. 教学难点 寻求三角形全等的条件. 教学过程 一、创设情境,复习提问 1.怎样的两个三角形是全等三角形?2.全等三角形的性质? 3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合: 图(1)中:△ABD≌△ACE,AB与AC是对应边; 图(2)中:△ABC≌△AED,AD与AC是对应边. 4.三角形全等的判定Ⅰ的内容是什么? 二、导入新课 1.三角形全等的判定(二) (1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题: 如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢? 不难看出,这两个三角形有三对元素是相等的: AO=CO,∠AOB= ∠COD,BO=DO. 如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合. (此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合) 由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等. 2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验: (1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'. (2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合? 3.边角边公理. 有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”) 三、例题与练习 1.填空: (1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?). (2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?). 2、例1 已知: AD∥BC,AD= CB(图3). 求证:△ADC≌△CBA. 问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF= CE或AE =CF)?怎样证明呢? 例2 已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE. 四、小 结: 1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件. 2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理. 五、作 业: 1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF. 2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF. 求证:△ABE≌△CDF. 课后作业:<<新课堂>> 第3课时 教学目标 1.三角形全等的条件:角边角、角角边. 2.三角形全等条件小结. 3.掌握三角形全等的“角边角”“角角边”条件. 4.能运用全等三角形的条件,解决简单的推理证明问题. 教学重点 已知两角一边的三角形全等探究. 教学难点 灵活运用三角形全等条件证明. 教学过程 Ⅰ.提出问题,创设情境 1.复习:(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边. (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? 三种:①定义;②SSS;③SAS. 2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢? Ⅱ.导入新课 问题1:三角形中已知两角一边有几种可能? 1.两角和它们的夹边. 2.两角和其中一角的对边. 问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律? 将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等. 提炼规律: 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”). 问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢? ①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长. ②画线段A′B′,使A′B′=AB. ③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA. ④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′. 将△A′B′C′与△ABC重叠,发现两三角形全等. 两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”). 思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 探究问题4: 如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? 证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180° ∠A=∠D,∠B=∠E ∴∠A+∠B=∠D+∠E ∴∠C=∠F 在△ABC和△DEF中 ∴△ABC≌△DEF(ASA). 两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”). [例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C. 求证:AD=AE. [分析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可. 证明:在△ADC和△AEB中 所以△ADC≌△AEB(ASA) 所以AD=AE. Ⅲ.随堂练习 (一)课本练习1、2. (二)补充练习 图中的两个三角形全等吗?请说明理由. 答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC. Ⅳ.课时小结 至此,我们有五种判定三角形全等的方法: 1.全等三角形的定义 2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS) 推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径. Ⅴ.作业 1.课本习题5、6、题.课后作业:<<新课堂>> 板书设计 13.2.3 三角形全等的条件(三) 一、两角一边 二、三角形全等的条件 1.两角及其夹边对应相等的两三角形全等(ASA) 2.两角和其中一角的对边对应相等的两三角形全等(AAS) 初中学习网-中国最大初中学习网站CzxxW.com | 我们负责传递知识!

更多>>其他相关资源

资料ID:

 / /

 …下载本资料需要
进入下载页

下载次

评论

我要评论 挺不错 有待提高

热门下载